§ 571.221 Standard No. 221; School bus body joint strength. S1. Scope. This standard establishes requirements for the strength of the body panel joints in school bus bodies. S2. *Purpose*. The purpose of this standard is to reduce deaths and injuries resulting from the structural collapse of school bus bodies during crashes. S3. Application. This standard applies to school buses. S4. Definitions. Body component means a part of a bus body made from a single piece of homogeneous material or from a single piece of composite material such as plywood. Body panel means a body component used on the exterior or interior surface to enclose the bus' occupant space. Body panel joint means the area of contact or close proximity between the edges of a body panel and another body component, including but not limited to floor panels, and body panels made of composite materials such as plastic or plywood, excluding trim and decorative parts which do not contribute to the strength of the bus body, members such as rub rails which are entirely outside of body panels, ventilation panels, components provided for functional purposes, and engine access covers. Bus body means that portion of a bus that encloses the bus occupant space, including the floor, but excluding the bumpers and chassis frame and any structure forward of the passenger compartment. Maintenance access panel means a body panel which must be moved or removed to provide access to one or more serviceable component(s). Passenger compartment means space within the school bus interior that is between a vertical transverse plane located 762 mm in front of the forwardmost passenger seating reference point and including a vertical transverse plane tangent to the rear interior wall of the bus at the vehicle centerline. Serviceable component means any part of the bus, of either a mechanical or electrical nature, which is explicitly identified by the bus chassis and/or body manufacturer in the owner's manual or factory service manual as requiring routine maintenance actions at intervals of one year or less. Tubing, wires and harnesses are considered to be serviceable components only at their attachments. S5 Requirements. S5.1 Except as provided in S5.2, each body panel joint, including small, curved, and complex joints, when tested in accordance with the procedure of S6, shall hold the body panel to the member to which it is joined when subjected to a force of 60 percent of the tensile strength of the weakest joined body panel determined pursuant to S6.2. S5.1.1 Body panels attached to each other shall have no unattached segment at the joint longer than 203 mm. S5.2 Exclusions $\,$ S5.2.1 The requirements of S5.1 do not apply to— (a) Any interior maintenance access panel or joint which lies forward of the passenger compartment. - (b) Any interior maintenance access panel within the passenger compartment that does not exceed 305 mm when measured across any two points diametrically on opposite sides of the opening. - (c) Trim and decorative parts which do not contribute to the strength of the joint, support members such as rub rails which are entirely outside of body panels, doors and windows, ventilation panels, and engine access covers. S6 Procedure S6.1 Preparation of the test specimen. S6.1.1 If a body panel joint is 203 mm or longer, cut a test specimen that consists of any 203 mm segment of the joint, together with a portion of the bus body whose dimensions are those specified in Figure 1, so that the specimen's centerline is perpendicular to the joint at the midpoint of the joint segment. Where the body panel joint is not fastened continuously, select the segment so that it does not bisect a spot weld or a discrete fastener. Support members which contribute to the strength of a body panel joint, such as rub rails on the outside of body panels or underlying structure attached to joint members, shall remain attached to the test specimen, except that material may be removed from the support #### §571.221 members as necessary to clear the gripping areas of the joint members being tested S6.1.2 If a joint is less than 203 mm long, cut a test specimen with enough of the adjacent material to permit it to be held in the tension testing machine specified in S6.3. S6.1.3 Prepare the test specimen in accordance with the preparation procedures specified in the 1989 edition of the Annual Book of American Society for Testing and Materials (ASTM) Standards. S6.2 Determination of minimum allowable strength. For purposes of determining the minimum allowable joint strength, determine the tensile strengths of the joined body components as follows: (a) If the mechanical properties of a joint component material are specified by the ASTM in the 1989 Annual Book of ASTM Standards, the lowest value of that material's thickness and tensile strength per unit of area shown in that source shall be used. (b) If the mechanical properties of a material are not specified by the ASTM in the 1989 Annual Book of ASTM Standards, determine its tensile strength by cutting a sheet specimen from outside the joint region of the bus body in accordance with Figure 1 of E 8-89 Standard Test Methods of Tension Testing of Metallic Materials, in Volume 03.01 of the 1989 Annual Book of ASTM Standards, and by testing it in accordance with S6.3. (c) The cross sectional area of material removed to facilitate the installation of fasteners shall be subtracted from the cross-sectional area of the panel in the determination of the tensile strength of the weakest joined body panel. S6.3 Strength Test. S6.3.1 The joint specimen is gripped on opposite sides of the joint in a tension testing machine in accordance with the 1989 Annual Book of ASTM Standards. S6.3.2 Adjust the testing machine grips so that the applied force on the joint is at 90 degrees plus or minus 3 degrees from the joint centerline, as shown in Figure 1. S6.3.3 A tensile force is applied to the specimen by separating the heads of the testing machine at any uniform rate not less than 3 mm and not more than 10 mm per minute until the specimen separates. ### FIGURE 1 #### All dimensions in millimeters $[41 \ FR \ 3872, \ Jan. \ 27, \ 1976, \ as \ amended \ at \ 41 \ FR \ 36027, \ Aug. \ 26, \ 1976; \ 67 \ FR \ 64366, \ 64367, \ Dec. \ 13, \ 2002; \ 68 \ FR \ 6360, \ Feb. \ 7, \ 2003]$ EDITORIAL NOTE: At 65 FR 11754, Mar. 6, 2000, §571.221 was amended by revising S5.2.1(a), effective Apr. 5, 2000. However, paragraph S5.2.1(a) does not exist in the text in effect at that time. The revised text reads as follows: ## § 571.221 Standard No. 221, School bus body joint strength. * * * * * * S5.2.1 The requirements of S5.1.1 and S5.1.2 do not apply to— $\,$ (a) Any interior maintenance access panel which lies forward of the passenger compartment, or which is less than 305 mm when measured across any two points diametrically on opposite sides of the opening. * * * * * # § 571.222 Standard No. 222; School bus passenger seating and crash protection. S1. Scope. This standard establishes occupant protection requirements for school bus passenger seating and restraining barriers. S2. Purpose. The purpose of this standard is to reduce the number of deaths and the severity of injuries that result from the impact of school bus occupants against structures within the vehicle during crashes and sudden driving maneuvers. S3. Application. This standard applies to school buses. S4. Definitions. Contactable surface means any surface within the zone specified in S5.3.1.1 that is contactable from any direction by the test device described in S6.6, except any surface on the front of a seat back or restraining barrier 76 mm or more below the top of the seat back or restraining barrier. Fixed occupancy seat means a bench seat equipped with Type 2 seat belts that has a permanent configuration regarding the number of seating positions on the seat. The number of seating positions on the bench seat cannot be increased or decreased. Flexible occupancy seat means a bench seat equipped with Type 2 seat belts that can be reconfigured so that the number of seating positions on the seat can change. The seat has a minimum occupancy configuration and maximum occupancy configuration, and the number of passengers capable of being carried in the minimum occupancy con- figuration must differ from the number of passengers capable of being carried in the maximum occupancy configuration. Maximum occupancy configuration means, on a bench seat equipped with Type 2 seat belts, an arrangement whereby the lap belt portion of the Type 2 seat belts is such that the maximum number of occupants can be belted. Minimum occupancy configuration means, on a bench seat equipped with Type 2 seat belts, an arrangement whereby the lap belt portion of the Type 2 seat belts is such that the minimum number of occupants can be belted. School bus passenger seat means a seat in a school bus, other than the driver's seat. Seat bench width means the maximum transverse width of the bench seat cushion. Small occupant seating position means the center seating position on a flexible occupancy seat in a maximum occupancy configuration, if the torso belt portion of the Type 2 seat belt is intended to restrain occupants whose dimensions range from those of a 50th percentile 6 year-old child only to those of a 50th percentile 10 year-old child and the torso belt anchor point cannot achieve a minimum height of 520 mm above the seating reference point, as specified by S4.1.3.2(a) of 49 CFR 571.210. Wheelchair means a wheeled seat frame for the support and conveyance of a physically disabled person, comprised of at least a frame, seat, and wheels Wheelchair occupant restraint anchorage means the provision for transferring wheelchair occupant restraint system loads to the vehicle structure. Wheelchair securement anchorage means the provision for transferring wheelchair securement device loads to the vehicle structure. Wheelchair securement device means a strap, webbing or other device used for securing a wheelchair to the school bus, including all necessary buckles and other fasteners. S4.1 Determination of the number of seating positions and seat belt positions